Online / Physical Event

6th Edition of International Conference and Exhibition on

Polymer Chemistry

Theme: Exploring recent advances in Polymer chemistry, related fields and applications

Event Date & Time

Event Location

Oslo, Norway

Brochure Program Abstract Registration ReaderBase Awards

20 Years Of Excellence in Scientific Events

441887480066

Performers / Professionals From Around The Globe

Tracks & Key Topics

Polymer Chemistry 2021

About Conference

About Conference

Euroscicon invites all the  participants from all over the world to attend “6th Edition of International Conference and Exhibition on Polymer Chemistry” during March 22-23, 2021 at Oslo,Norway. Which includes prompt keynote presentations, oral talks, poster presentations, Workshops and Exhibitions.

Polymer Chemistry 2021 is a global overview the theme: “Exploring recent advances in Polymer chemistry, related fields and applications” is designed for professionals at all levels and career phases of the plastics industry, who want to improve their understanding of what will drive and shape the future of the market. This will include senior executives, sales and marketing personnel, strategic planners, who will benefit from a broad overview of the polymer industry. The strength of the Conference is that the participants tend to include all phases of the value chain as well as individuals from a wide variety of sector and countries. This experience helps the Conference to be an interactive forum and encourages a strong level of dialogue and discussion, thus maximising the benefits of attendance. This conference surely provides better information and insight into the development of the world polymer industry, which in turn has enabled attendees to make better and more profitable decisions.

Target Audience for Polymer Chemistry 2020

Eminent Scientists/ Research Professors in the field of polymer chemistry, Junior/Senior research fellows, Students, Directors of polymer research companies, Chemical Engineers, Members of Chemistry associations and exhibitors from Polymer Industry/Plastic Industries.

Why to attend our Conference

It promotes the positive contributions of Polymers/plastics by;

- Highlighting the material’s beneficial properties and its positive contributions to society throughout its life cycle

- Providing society with educational information to help raise awareness and correct misconceptions

- Liaising with European and national institutions in policy matters to secure decisions based on accurate information

- Communicating plastics contribution to sustainable development, innovation and quality of life

- Initiating in depth studies and sharing experiences.

Sessons/Tracks

EuroSciCon invites all the participants from all over the world to attend “6th Edition of International Conference on Polymer Chemistry’’ during March 22-23 2021 at Oslo,Norway which includes prompt keynote presentations, Oral talks, Poster presentations, Workshops and Exhibitions.

Polymer Chemistry is the branch of chemistry that deals with large molecules made up of repeating units referred to as monomers. The scope of polymer chemistry extends from oligomers with only a few repeating units to high polymers with thousands or millions of repeating units. Polymer chemistry includes branches that mimic the divisions of the field of chemistry, with synthetic (preparation methods) and physical (property determination), biological (proteins, polysaccharides, and polynucleic acids), and analytical (qualitative and quantitative analysis) chemistry. Pre-existing polymers can also be modified by chemical means - including grafting or functionalization reactions. Polymerization and modification reactions can be employed to produce designer polymers as new materials with practically any desired properties.

TRACK 1Recent Developments In Polymer Synthesis

Conference Image

Polymer synthesis is a complex procedure and can take place in a variety of ways. Addition polymerization describes the method where monomers are added one by one to an active site on the growing chain. Polymers are huge macromolecules composed of repeating structural units. While polymer in popular usage suggests plastic, the term refers to a large class of natural and synthetic materials. The study of polymer science begins with understanding the methods in which these materials are synthesized. Polymer synthesis is a complex procedure and can take place in a variety of ways.

TRACK 2Polymer Design And Reaction

Conference Image

 

In Polymer Chemistry, polymerization is a process of reacting monomer molecules together in a chemical reaction to form polymer chains or three-dimensional networks. There are many forms of polymerization and different systems exist to categorize them. In chemical compounds, polymerization occurs via a variety of reaction mechanisms that vary in complexity due to functional groups present in reacting compounds and their inherent steric effects. In more straightforward polymerization, alkenes, which are relatively stable due to sigma bonding between carbon atoms, form polymers through relatively simple radical reactions; in contrast, more complex reactions such as those that involve substitution at the carbonyl group require more complex synthesis due to the way in which reacting molecules polymerize. Alkanes can also be polymerized, but only with the help of strong acids.

TRACK 3Polymer Physics And Characterizations

Conference Image

Polymer Physics is the field of physics that studies polymers, their fluctuations, mechanical properties, as well as the kinetics of reactions involving degradation and polymerization of polymers and monomers respectively. While it focuses on the perspective of condensed matter physics, polymer physics is originally a branch of statistical physics. Polymer physics and polymer chemistry are also related with the field of polymer science, where this is considered the applicative part of polymers. Polymer Characterization includes determining molecular weight distribution, the molecular structure, the morphology of the polymer, Thermal Properties, mechanical properties, and any additives. Molecular Characterization also includes the development and refinement of analytical methods with statistical models which help to understand phase separation and phase transition of polymers. The results achieved hereof can be eventually applied to optimize the experimental conditions during analyses. We have multiple approaches for Polymer Characterization.

TRACK 4: Stereochemistry Of Polymers

Conference Image

When a polymer has stereochemical isomerism within the chain, its properties often depend on the stereochemical structure. Thus, the analysis of the Stereo-Chemistry of polymers is important and NMR spectroscopy has been the most valuable tool for this purpose. It is a general rule that for a polymer to crystallize, it must have highly regular polymer chains. Highly irregular polymers are almost inevitably amorphous. Polymer chains can have isomeric forms that decrease the regularity of the chains.

There are three important forms of isomerism in polymers.

·Structural Isomerism

·Sequence Isomerism (Head-to-Tail or Head-to-Head)

·Stereoisomerism (Tacticity)

Stereochemical formulae for polymer chains are shown as Fischer projections rotated through 90° i.e. displayed horizontally rather than vertically, or as hypothetical extended zigzag chains the latter occasionally give a clearer indication of the three-dimensional arrangement.

TRACK 5: Biodegradable Polymers

Conference Image

The terminology used in the bioplastics sector is sometimes misleading. Most in the industry use the term bioplastic to mean a plastic produced from a biological source. All (bio- and petroleum-based) plastics are technically biodegradable, meaning they can be degraded by microbes under suitable conditions. However, many degrade so slowly that they are considered non-biodegradable. Some petrochemical-based plastics are considered biodegradable and may be used as an additive to improve the performance of commercial bioplastics. Non-biodegradable bioplastics are referred to as durable. The biodegradability of bioplastics depends on temperature, polymer stability, and available oxygen content. The European standard EN 13432, published by the International Organization for Standardization, defines how quickly and to what extent a plastic must be degraded under the tightly controlled and aggressive conditions (at or above 140 °F (60 °C)) of an industrial composting unit for it to be considered biodegradable. This standard is recognized in many countries, including all of Europe, Japan and the US. However, it applies only to industrial composting units and does not set out a standard for home composting. Most bioplastics (e.g. pH) only biodegrade quickly in industrial composting units. These materials do not biodegrade quickly in ordinary compost piles or in the soil/water. Starch-based bioplastics are an exception and will biodegrade in normal composting conditions.

TRACK 6: Biopolymers & Biomaterials

Conference Image

Advanced polymeric Biomaterials continue to serve as a cornerstone of new medical technologies and therapies. Most of these materials, both natural and synthetic, interact with biological matter without direct electronic communication. However, biological systems have evolved to synthesize and employ naturally-derived materials for the generation and modulation of electrical potentials, voltage gradients, and ion flows. Bioelectric phenomena can be interpreted as potent signaling cues for intra- and inter-cellular communication. These cues can serve as a gateway to link synthetic devices with biological systems. This progress report will provide an update on advances in the application of electronically active Biomaterials for use in organic electronics and bio-interfaces. Specific focus will be granted to the use of natural and synthetic biological materials as integral components in technologies such as thin film electronics, in vitro cell culture models, and implantable medical devices. Future perspectives and emerging challenges will also be highlighted.

TRACK 7:  Polymer Engineering

Conference Image

Polymer Engineering is generally an engineering field that designs, analyses, and/or modifies polymer materials. Polymer engineering covers aspects of the petrochemical industry, polymerization, structure and characterization of polymers, properties of polymers, compounding and processing of polymers and description of major polymers, structure property relations and applications.

TRACK 8: Polymers For Emerging Technologies

Conference Image

The early developments in Polymer Technology occurred without any real knowledge of the molecular theory of polymers. The idea that the Structure of Molecules in Nature might give an understanding of plastics was put forward by Emil Fischer, who in 1901 discovered that natural polymers were built up of linked chains of molecules. It was not until 1922 that the chemist Herman Staudinger proposed that not only were these chains far longer than first thought, but they were composed of giant molecules containing more than a thousand atoms. He christened them ‘macromolecules’, but his theory was not proved until 1935 when the first plastic was created with a predictable form. This was the first synthetic fibernylon.

TRACK 9: Polymerization Catalysis 

Conference Image

Polymer Catalysis has become an independent and thriving branch of chemistry. Extensive development of this field is attributed to success achieved in synthesis and investigation of so-called functional polymers as well as to success attained in homogeneous, metal complex catalysis. The fruitful cooperation of these two directions, namely the fixation of homogeneous catalysts or transition metal compounds on organic polymers, has led to the novel idea of heterogenization of homogeneous metal complex catalysts. Catalysis by polymers is the new intensively developing field of science.

TRACK 10: Applications Of Biopolymers

Conference Image

Biopolymers are available as coatings for paper rather than the more common petrochemical coatingsBioplastics are used for disposable items, such as packaging, crockery, cutlery, pots, bowls, and straws. They are also often used for bags, trays, fruit and vegetable containers and blister foils, egg cartons, meat packaging, vegetables, and bottling for soft drinks and dairy products. These plastics are also used in non-disposable applications including mobile phone casings, carpet fibers, insulation car interiors, fuel lines, and plastic piping. New electroactive bioplastics are being developed that can be used to carry electric current. In these areas, the goal is not biodegradability, but to create items from sustainable resources. Medical implants made of PLA (polylactic acid), which dissolve in the body, can save patients a second operation. Compostable mulch films can also be produced from starch polymers and used in agriculture. These films do not have to be collected after use on farm fields.

TRACK 11: Bioplastics

Conference Image

Biopolymers are available as coatings for paper rather than the more common petrochemical coatingsBioplastics are used for disposable items, such as packaging, crockery, cutlery, pots, bowls, and straws. They are also often used for bags, trays, fruit and vegetable containers and blister foils, egg cartons, meat packaging, vegetables, and bottling for soft drinks and dairy products. These plastics are also used in non-disposable applications including mobile phone casings, carpet fibers, insulation car interiors, fuel lines, and plastic piping. New electroactive bioplastics are being developed that can be used to carry electric current. In these areas, the goal is not biodegradability, but to create items from sustainable resources. Medical implants made of PLA (polylactic acid), which dissolve in the body, can save patients a second operation. Compostable mulch films can also be produced from starch polymers and used in agriculture. These films do not have to be collected after use on farm fields.

TRACK 12: Polymer Nanotechnology

Conference Image

Polymeric Nanoparticles are predominantly prepared by wet synthetic routes. Several industrial processes will be described. Emphasis will be placed on the type of polymers and morphology structures that can be synthesized using each process. Controlled radical polymerization will be explored for their ability to provide structural control of polymer chains. The extraordinarily large surface area on the nanoparticles presents diverse opportunities to place functional groups on the surface. Particles can be created that can expand/contract with changes in pH or interact with anti-bodies in special ways to provide rapid ex-vivo medical diagnostic tests. Important extensions have been made in combining inorganic materials with polymers and in combining different classes of polymers together in nanoparticle form.

TRACK 13: Future Market Of Polymers

Conference Image

The marketing mix is an important part of the marketing of polymers and consists of the marketing 'tools' you are going to use. But marketing strategy is more than the marketing of mixed polymers and plastics. The marketing strategy sets your marketing goals, defines your target markets and describes how you will go about positioning the business to achieve advantage over your competitors. The marketing mix, which follows from your marketing strategy, is how you achieve that 'unique selling proposition' and deliver benefits to your customers. When you have developed your marketing strategy, it is usually written down in a marketing plan. The plan usually goes further than the strategy, including detail such as budgets. You need to have a marketing strategy before you can write a marketing plan. Your marketing strategy may serve you well for several years but the details, such as budgets for marketing activities, of the marketing plan may need to be updated every year.

TRACK 14: Polymer Science

Conference Image

The foremost challenges in the upcoming decades will be the increase in population, the concentration of people in expansive urban centers, and globalization, and the expected change of climate. Hence, the main concerns for humans in the future will be energy & resources, food, health, mobility & infrastructure and communication. There is no doubt that polymers will play a key role in finding successful ways in handling these challenges. Polymers will be the material of the new millennium and the production of polymeric parts i.e. green, sustainable, energy-efficient, high quality, low-priced, etc. will assure the accessibility of the finest solutions round the globe. Synthetic polymers have since a long time played a relatively important role in present-day medicinal practice. Many devices in medicine and even some artificial organs are constructed with success from synthetic polymers. It is possible that synthetic polymers may play an important role in future pharmacy, too. Polymer science can be applied to save energy and improve renewable energy technologies.

Market Analysis

Market Analysis Report

The global polymer market (2016–2021) is estimated to reach USD 171.96 Billion by 2021 at a CAGR of 8.5%. The report covers the polymer foam market by resin type, such as polyurethane (PU), polystyrene (PS), polyvinyl chloride (PVC), phenolic, polyolefin, melamine and others; by application, such as packaging, building & construction, and others; and by region, namely, North America, Europe, Asia-Pacific. Base year considered for the study is 2015, while the forecast period is between 2016 and 2021. The rise in demand for polymer foams in applications, such as automotive, building & construction, and packaging facilitates the growth of the market. The European polymer industries makes the most significant contribution to the welfare in Europe by enabling innovation, creating quality of life to citizens and facilitating resource efficiency and climate protection. Almost more than 1.5 million people are working in 60,000 companies (mainly small and medium sized companies in the converting sector) to create a turnover above 340 bn EUR per year. The plastics industry includes polymer producers - represented by Plastics Europe, converters - represented by EuPC and machine manufacturers - represented by EUROMAP.

Global Smart Polymers market is expected to grow from $1.52 billion in 2016 to reach $3.98 billion by 2023 with a CAGR of 14.7%. Application of shape memory polymer in automotive industry, requirement of efficient technologies over existing ones, beneficial property of phase transition and the usage of smart polymers for controlled drug delivery are the crucial factors that fuel the growth of the market. On the contrary, high cost associated with the use of smart polymers and changes over in the industry of healthcare are the key factors to hamper the growth of the market in the forthcoming years.

Among the Polymer types, the shape memory polymers segment holds the highest share in the market, because of the broad range of applications like inexpensive, reusable custom molds, deployable components and dynamic configurable parts. North America led the global market with largest share. It is likely to remain in the leading position throughout the forecast period due to technological advancements. Asia-Pacific is expected to witness the fastest-growth as a result of the rapid industrialization of the main product end-users primarily automotive, textile, and electrical & electronics sector.

Some of the key players in global Smart Polymers Market include The Dow Chemical Company, Sigma-Aldrich Corporation, SABIC, Nissan Chemical Industries Ltd., Nippon Shokubai, Nexgenia Corporation, Nature works LLC, McDermid Autotype Ltd., Lubrizol Corporation, Huntsman International LLC, High Impact Technology, FMC Corporation, DuPont, Covestro AG, BASF SE, Autonomic Materials, Akzo Nobel, Advanced Polymer Materials Inc, Advanced Biopolymers AS, Acros Organics.

Applications Covered:

Bio Medical & Technology

Tissue Engineering

Drug Delivery

Bio-Separation

Biocatalyst

Electrical & Electronics

Nuclear Energy

Waste Management

Radiation Detection

Textile

Automotive

Packaging

Optical Data Storage

Medical Devices

Other Applications

Past Conference

Polymer Chemistry 2020 Report

The 5th Edition of International Conference and Exhibition on Polymer Chemistry was held on March 23-24, 2020 in London, UK with the presence of professional researchers, scientists involved in the development of high-quality education & research in all aspects.

Polymer Chemistry 2020 witnessed an amalgamation of peerless speakers who enlightened the crowd with their knowledge and confabulated on various topics related to the field of Polymer Chemistry. The highly exalted conference hosted by EuroSciCon was marked with the attendance of renowned and brilliant researchers, business delegates and talented student communities representing more than 20 countries around the world. The conference has tried grounding every aspect related to Polymer Chemistry, covering all the possible research areas.

The conference aimed a parallel rail with theme “Sustainable Developments, Innovations and Recent Applications of Polymer Chemistry”. The meeting engrossed a vicinity of cognizant discussions on Recent Developments in Polymer Synthesis, Polymer Design and Reactions, Polymer Physics and Characterizations, Stereochemistry of Polymers, Biodegradable Polymers, Biopolymers & Biomaterials, Polymer Engineering, Polymers for Emerging Technologies, Polymerization catalysis or polymer-modified catalysts, Applications of Biopolymers, Bio plastics, Polymer Nanotechnology, Future Market of Polymers, Polymer Science, Polymers for Stem Cell, Polymers in all-solid-state batteries. The three days event implanted a firm relation of upcoming strategies in the field of Polymer Chemistry with the scientific community. The conceptual and applicable knowledge shared, will also foster organizational collaborations to nurture scientific accelerations.

We are thankful to all our speakers for encouraging and supporting us to conduct the conference and catapulting the same to pinnacle of success.

The Organizing Committee would like to thank the moderator: Luigi Angelo Castriotta, University of Rome Tor Vergata, Italy for valuable contribution which resulted in smooth functioning of the conference.

We would also like to thank our Poster judge Tsukasa Miyazaki, Comprehensive Research Organization for Science and Society (CROSS), Neutron Science and Technology Center, Japan for the evaluation of Poster Presentations.

The meeting was embarked with an opening ceremony followed by Keynote Sessions and followed by series of lectures delivered by Honorable Guests and members of the Keynote forum. The highlights of the meeting were the eponymous lectures, delivered by:

Adam Voelkel, Poznan University of Technology, Poland

Hiroyuki Aoki, J-PARC Center, Japan Atomic Energy Agency, Japan

Zuzanna Buchwald, Poznan University of Technology, Poland

Tsukasa Miyazaki, Comprehensive Research Organization for Science and Society (CROSS), Neutron Science and Technology Center, Japan

Hsin-Wei Jung, Fu Jen Catholic University, Taiwan

Emine Gul Cansu-Ergun, Baskent University, Turkey

Wael Mahmoud Ahmed Darwish, National Research Centre, Egypt

Pourya Zarshenas, Shahid Beheshti University, Iran

Pablo R Outon, Indresmat SL, Spain

Rahima S Mammadova, Azerbaijan State Pedagogical University, Azerbaijan

Sheta Mohamed, National Research Centre, Egypt

Rahima S Mammadova, Azerbaijan State Pedagogical University, Azerbaijan

Geum Chae Jang, Raphas Co. Ltd, South Korea

Jung Hyun Bae, Raphas Co. Ltd, South Korea

All of them provided their fruitful contributions in the form of highly informative presentations and made the conference a top notch one.

EuroSciCon is prerogative to thank the Organizing Committee Members, Keynote speakers and Chairs on transcribing the plenary sessions and workshop in a diversified and variegate manner to make this conference an enviable artifact.

EuroSciCon offers its heartfelt appreciation to our Exhibitor “Physical Electronics GmbH, Germany”. We also express our sincere thanks to all the media partners for the promotion of our event to glory.

With the grand success of Polymer Chemistry 2020, we are glad to announce our next upcoming conference “6th Edition of International Conference and Exhibition on Polymer Chemistry” which is going to be held in Oslo,Norway during March 22-23, 2021.

Bookmark your dates…

Hoping to meet you again coming year at Norway!!!

Learn More

Polymer Companies

Polymer Companies in Europe:

Leibniz Institute of Polymer Research DresdenPostnova Analytics GmbH |Addlink software cientifico | Polymer Conferences USA 2019|CK PolymersAdvanced Technologies Center ATC |Polymer ConferencesMagpie PolymersLiving Cell Technologies | Micro-Bio-Polymer Company | Evolve Polymers Limited | Meric Ltd|Quick step Technologies | VSPC co.LTD | Warsash scientific |Polymer Conferences|

AQUANOVA AG | 

Market analysis

Euroscicon Ltd with immense pleasure invites all the contributors across the globe to the 2nd International conference on Food Security and Sustainability (Food Security 2017) during June 26-27, 2017 at San Diego, USA which includes prompt keynote presentations, Oral talks, Poster presentations and Exhibitions. Euroscicon Ltd organizes 1000+ scientific events inclusive of 600+ Conferences, 500+ Workshops and 200+ Symposiums on various topics of Science & Technology across the globe with support from 1000 more scientific societies and Publishes 500+ Open Access journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Food security is often defined in terms of food availability, food access and food utilization. Global agriculture currently produces ample calories and nutrients to provide the entire world's people healthy and productive lives". However, food is not distributed equally to regions, countries, households and individuals. Improved access to food-through increased agricultural productivity and incomes-is essential to meet the food needs of the world's growing population. Successful food security and poverty-oriented programmes not only assist poor rural populations to produce more and diversified products but to produce a surplus that can be marketed and thereby generate income for the purposes of improving quality of life through improved diet and nutrition, investment in productive activity, and as collateral for credit to purchase inputs and/or other supplies to enhance agricultural or non-agricultural enterprise. Agricultural economists have maintained that greater concentration on small farmers leads to faster growth rates of both aggregate economic output and employment .Other analysts argue that production-focused service delivery directed solely at the poor as producers in isolated areas will yield low and probably diminishing returns.

San Diego is a major city in California, on the coast of the Pacific Ocean in Southern California. San Diego is the eighth-largest city in the United States and second-largest in California With an estimated population of 1,394,928 as of July 1, 2015, San Diego is the birthplace of California and is known for its mild year-round climate, natural deep-water harbour, extensive beaches, long association with the United States Navy and recent emergence as a healthcare and biotechnology development center. The city is the seat of San Diego County and is the economic center of the region.

Join us at Global Food Security conference for “Producing sustainable thoughts to bolster the future”. This event has been designed to address scientists, scholars, and different societies supporting food security, Industries and other related scientific communities with different levels of awareness, expertise and proactive solutions to create global impact in this field. Moreover, it will help industrialists to incorporate sustainability into every aspect of Agricultural Industries business model. The Food Security conference will influence industries to maximize their yield and profit through the application of strategic techniques. Additionally, it will reveal the best techniques to promote sustainable agricultural development and achieve a hunger free world by 2050. We look forward to an exciting scientific event in the beautiful city of San Diego, USA.

-->

Talk to Us

Speak directly to one of our conference representatives by calling.


+0044-2033180199

Mail Us

E-mail us your questions about the conference. We will respond to your questions.


contact@euroscicon.com

Contact Us

Have questions?
We'll be in touch within 24 hours.


Contact Us

Address

EuroSciCon Ltd
35 Ruddlesway,
Windsor, Berkshire,
SL4 5SF, UK

EuroSciCon Events are produced by Euroscicon Ltd

EuroSciCon, founded in 2001 is a UK based independent life science Events Company with predominantly business and academic client base. The key strategic objective of EuroSciCon is to communicate science and medical research between academia, clinical practice and the pharmaceutical industry. Most of its events are in Europe and London or live streamed. EuroSciCon expanded its operations to international in association with Meetings International, Singapore. All major meetings of EuroSciCon and Meetings International will issue Continued Professional Education (CPD), Continued Education (CE), Continued Medical Education (CME) Credits.